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Context 
Granular materials are an important class of matters found in the nature and in a large number of industrial 
fields like civil engineering, food and pharmaceutical industries, powder technologies (chemistry, cosmetics...), 
etc. In many situations, these materials can be highly stressed and their constitutive particles undergo large 
deformations without rupture. It means that the behavior of soft granular systems is governed by both 
interactions between particles (contact, adhesion...) and their individual behavior (elasticity, plasticity…). They 
can reach packing fractions beyond Random Close Packing (RCP) state and they flow by both particle shape 
change and collective rearrangements. 
We investigate the texture and rheology of ultrasoft granular systems by means of numerical simulations using 
the Material Point Method (MPM) to model particle deformability, combined with the Contact Dynamics (CD) 
method for the treatment of contacts between particles [1-4].

Various types of soft particles: (a) solid particle 
covered with adsorbed or grafted polymer chains; (b) 
microgel particle; (c) star polymer; (d) block copolymer 
micelle; (e) emulsion droplet; (f) multi-lamellar vesicle; 
(g) liposome; (h) biological cell (according to 
Bonnecaze and Cloitre, Apl. Poly. Sci. 2010). 
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Numerical methodology

The MPM is a finite element method with mobile integration points. Each 
particle is discretized by a set of material points with fixed masses carrying 
all state variables such as stress and velocity field. The MPM algorithm also 
uses a background mesh for solving the momentum equations.  
Our technique for modeling of soft-article materials is based on interfacing 
the MPM, for dealing with the bulk behavior of particles, with the CD method 
for the treatment of frictional contacts.
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Fig. 5 Evolution of the excess mean coordination number Z − Zc as
a function of excess packing fraction Φ − Φc for elastic and elasto-
plastic particles by MPM simulations. The solid line is power-law fit
(Φ − Φc)

0.5; see Eq. (17)

the numerical simulations is noticeable. To reproduce well
the predictions, the particle discretisation may be refined in
order to resolve correctly the small radii of curvature at the
contact zones between particles. In consequence, to repro-
duce the compaction results, one needs to determine four
parameters in the analytical models as well as the jamming
state. Moreover, the general feature of the curves shown in
Fig. 4 is more or less similar to the typical compaction curves
observed in industrial applications [5,16–18] and the pre-
sented empiricalmodel seems to reproducewell these results.
However, this model still needs to be validated with a more
detailed and quantitative comparison between simulations
and experiments.

The evolution of the mean coordination number Z beyond
the jamming point as a function of the packing fraction is
presented in Fig. 5. As shown in the previous works (e.g. [11,
19–21]), the excess coordination number Z − Zc normalised
by Z1−Zc behaves as a power law as a function of the excess
packing fraction Φ − Φc normalised by Φ1 − Φc:

Z − Zc

Z1 − Zc
=

√
Φ − Φc

Φ1 − Φc
, (17)

where Z1 and Φ1 correspond to any state after the jamming
point. We observe that the elastic and plastic results are uni-
fied and fitted by the model (17) independent of the material
behaviours.

5 Concluding remarks

This paper presents a compaction study of elasto-plastic soft
particle systems using a numerical approach developed in
our previous works [9–11]. This parallelised technique is
based on coupling of an implicit formulation of the mate-
rial point method (MPM) for individual particles and the
contact dynamics (CD) method for the treatment of contact
interactions. The MPM allows accounting for the realistic
mechanical behaviour of individual particles, including elas-
tic and plastic behaviours. Here, we consider the particle
behaviour as a rate-independent elasto-plastic model based
on thebilinear isotropic hardening.Adiametrical compaction
of one single particle was performed to illustrate the potential
of this method to simulate contact interactions between soft
elasto-plastic particles.

The MPM-CD approach is then used to simulate the uni-
axial compaction of an assembly of soft particles (discs).
Obviously, the discs do not represent real particle shapes in
industrial applications. But the developed approach can be
easily applied to more complex particle shapes [10]. The
packings with plastic particles can undergo large deforma-
tions at a lower compressive stress in comparisonwith elastic
particles. It is due to the occurrence of weaker stress chains
between particles. However, the required compressive stress
to achieve high packing fractions increases with hardening
for plastic particles. We observed a logarithmic variation of
this stress beyond the jamming state with packing fraction
for elastic and plastic particles. A model based on porous
materials was introduced in order to explain this behaviour.
This model reproduced well the numerical results with four
parameters to fix. Since the considered particles were nearly
incompressible (ν = 0.45), it is interesting to verify and
adjust this model for different ranges of compressible parti-
cles. An experimental study is also required to validate the
proposed model. Finally, it was shown that the coordination
number is related to the packing fraction by a power-law
function beyond the jamming transition.

Acknowledgements This work (Project ID 1502-607) was publicly
funded through ANR (the French National Research Agency) under
the “Investissements d’avenir” programmewith the reference ANR-10-
LABX- 001-01 Labex Agro and coordinated by Agropolis Fondation,
France, under the frame of I-SITE MUSE (ANR-16-IDEX-0006). We
are also grateful to the Genotoul bioinformatics platform Toulouse
Midi- Pyrenees (Bioinfo Genotoul) for providing computing resources.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

123

Uniaxial compression of an assembly of soft particles
Uniaxial compaction of 300 deformable particles particles confined in a rigid box is carried out using MPM 
simulations. The initial configuration is prepared by means of CD simulations. A small size polydispersity is 
introduced in order to avoid long-range ordering. The coefficient of friction between the particles, and 
between the particles and the walls is set to zero. 
Material properties : Elasto-plastic constative law with linear isotropic hardening 

, , ,   and ρ = 1000 Kg/m3 E = 10 MPa ν = 0.45 σy = 0.4 MPa H = 0, 1, 3 MPa

Evolution of average coordination number  as a function of packing 
fraction  

This power law relation fits the data points:  

 

Here,  and  correspond to the jamming point, and  and  correspond to 
a dense state that can be reached for a confinement stress that tends towards 
infinity. This relation is almost independent of dimension, interaction potential 
or polydispersity (O’Hern et al. PRE 2003). In the above relation, there is no 
adjusting parameter.
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Figure 2: A snapshot of the initial configuration (a), snapshots of the compaction of a packing
of particles with elastic and elasto-plastic behaviours for packing fraction of � = 0.97 (b-e) and
zoom of bottom right of the deformed packings (f-i).
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A snapshot of initial configuration and the 
snapshots of the packing for Φ ≃ 0.97
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Figure 2. The excess applied stress ���c as a function of pack-
ing fraction� and excess strain "�"c for elastic and elasto-plastic
particles by MPM simulations. �c and "c correspond to the jam-
ming point �c ' 0.8. The lines show the predicted behaviours
beyond jamming by the compaction models introduced in this
paper; see Eqs. (??), (5) and (9).

where ↵ is a constant parameter to be determined. More-
over, the plastic stress �p can be defined in the following
form by considering Eqs. (??) and (5):
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Here, Ep is the plastic tangent modulus related to H

through: Ep = EH/(E + H) and µp denotes the plastic
shear modulus: µp = Ep/2(1 + ⌫p). Note that, by assum-
ing that the volume change due to plastic deformation is
negligible, one concludes the equality of the elastic and
plastic Poisson’s ratios; i.e. ⌫p = ⌫.

4 Coordination number and Compaction

Z � Zc

Z1 � Zc

=

r
� � �c

�1 � �c

, (15)
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Figure 3. Evolution of the excess coordination number Z � Zc as
a function of the excess packing fraction � � �c for the neo-
Hookean and elasto-plastic assemblies presented above. Les
lignes sont la loi de puissance (� � �c)0,5 ; voir la relation (15)
[3, 5].
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Theoretical description above the jamming point [4] 
The vertical stress  as a function of the packing fraction  for the elastic particles can be expressed as follows:   

 

Granular materials like a porous media —>  with  and  . 

Here,  is the porosity ( ),  and  denote the characteristic components for Young’s and shear 
moduli, and  is the critical porosity, below which the effective Young’s and shear moduli become zero.  

For the plastic particles: the stress is decomposed into an elastic part  and a plastic part : 

   with  as the plastic volume fraction ( ). 

This model can predict the behavior of the assembly of elasto-plastic particles with: 

, ,  ,  ,  & 

σ Φ

σ = −
1

1
Meff + 1

c1ZΦ

(ln(Φ) + c2)

Meff =
μeff(4μeff − Eeff )

3μeff − Eeff
Eeff = E (1 −

p
pc )

fE

μeff = μ (1 −
p
pc )

fμ

p p = 1 − Φ fE f G

pc

σe σp

σ = (1 − fp)σe + fpσp fp fp = α ln ( Φ
Φc )

c1 = 100 pc = 0.201( ≃ 1 − Φc) fE = 1.1 fμ = 0.1 c2 = 0.23( ≃ − ln(Φc)) α = 2.5


