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Natural context

The coupling between groundwater flow and
erosion of the landscape controls the growth of
ariver and shapes the geometry of its head.

Experiment

Channel Plexiglas
1 mlong, 20 cm high, 2.6 cm wide

Sediments Glass beads, diameter dS =1mm

Fluid Glycerol + water (60/40)
density p ~ 1.15 g/cm?®
viscosity n ~ 102 Pa.s
surface tension o ~ 7 x 102 N/m
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Abstract

Seepage erosion occurs when groundwater emerges at the surface of a
granular heap. A spring forms and feeds a river which entrains
sediments, thus changing the groundwater flow.

We reproduce this phenomenon in the laboratory using a quasi-2D
aquifer filled with glass beads, by imposing a water level at one end of
the pile. Water flows through the aquifer and emerges at the surface of
the granular bed. For large enough water levels this river erodes its bed
and the spring progressively ascends the heap. We investigate its
trajectory, the evolution of the groundwater discharge and the river
depth. Intriguingly, we find that after an initial erosive period the river
attains a new equilibrium profile, with an elevated spring.

We model the flow in the aquifer using Darcy's law, predicting the
shape of the water table, the position of the spring and the
groundwater discharge. By applying Coulomb’s frictional law to the
forces experienced by a grain we predict a threshold for the onset of
erosion as a function of reservoir height and aquifer length. This
prediction provides a dynamical theory for the erosional dynamics of
the river. Our combined theoretical and experimental approach
thereby helps constrain the response of an idealised erosive
river-catchment system to steady forcing.
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Mechanical equilibrium of a grain

Forces applied on a grain at the surface of the river bed:

e gravity fq o< —Ap gds
o dragging  f,; o 7d?

e seepage  f, ox —pgkds i,

e cohesion  f,

Coulomb’s frictional law:

Jt > Je+ Bifn

This destabilization condition reads:
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Trajectory of the spring

In the erosive regime, the spring progressively

ascends the heap and the granular profile recedes:

Granular interfaces detected every 5 minutes

Jurin’s law:
2 7,

oh = bt ~ lem
pgR

B, = BAp gd>/f. :Bond number

-==|nitial water table

The groundwater discharge is constant during the
erosion: the spring follows the initial water table.

Water table, spring and groundwater discharge

Darcy’s law and Boussinesq’s approximation — water table and

groundwater discharge:

h = i,z 1—2(1— oh > (1—£
Ly T o

qu — _K,U’rhs

qw, groundwater discharge (mL/min)

Mass conservation — position of the spring (or contact point):

12

=
o
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0 = 7/Apgds :Shields stress

0; = [/ :critical Shields stress

New equilibrium profile

After aninitial erosive period the river attains a

new equilibrium profile, with an elevated spring.
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For the river bed to be exactly at the new threshold
of erosion, the mechanical equilibrium of a grain
must now read (in a dimensionless form):

q: : groundwater discharge

h :local height of the river bed
S :local slope of the river bed
S, :slope at the spring
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In terms of X, and ho, the threshold condition reads:

oh . 9 L0
= 7 1
)+ ()

/. :distance to the spring to reach a critical river depth.
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