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Metal barrier thickness dependence at 10K

ST-FMR signals at 12 dBm and 0.3 mA

Ta-barrier thickness dependence

Ta-barrier thickness dependence of the effective spin Hall angle in the 2DEG 

and in the whole heterostructure (2DEG +Ta/Py interface)
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STO/Ta/NiFe reference sample without 2DEG. Ta layer is not thick enough to enable 2DEG formation.

For tTa = 0.4, 0.6 and 1 nm, Ta layer thickness thick enough to allow 2DEG formation → strong contribution of the 2DEG. Ta

layer is thin enough to have a weak barrier effect. Both 2DEG and Ta(oxidized)/Py interface contribute to the conversion.

Θ*tot = Θ*2DEG + Θ*Ta/Py interface

High 2DEG contribution to the conversion but thick Ta layer → possible strong barrier effect. Only small part of the conversion

in the 2DEG is detected, together with lower conversion at Ta(oxidized)/Py interface due to lower Ta oxidation

STO/Ta(0.6nm)/NiFe(10nm)/MgO/Ta 

From magnetotransport measurements at 10K, we have RNiFe = 90.2 Ω and Rtot = 80.2 Ω → R2DEG = 722,4 Ω

Portion of charge current passing through the 2DEG is :
𝑅𝑁𝑖𝐹𝑒

𝑅𝑁𝑖𝐹𝑒+𝑅2𝐷𝐸𝐺
= 11,1%.

At least 2 charge-to-spin conversion contributions: 1) in the 2DEG 2) at the Ta/Py interface
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2DEG conversion: Effective spin Hall angle versus frequency for 

different Ta-barrier thicknesses

Damping modulation with injected DC charge current
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ABSTRACT We study spin-orbit torques by spin-torque ferromagnetic resonance (ST-FMR)

Non-volatile electric-control of the 2D electron gas (2DEG) resistivity is demonstrated in ST-FMR devices

Metal-barrier thickness and temperature dependences of the charge-to-spin conversion in Metal/SrTiO3 systems are reported

Spin-orbit torques and spin-pumping in Metal/SrTiO3-based two-dimensional electron gases studied by 

ferromagnetic resonance techniques 

D. Vaz et al., Nat. Mat. 18 (2019) 

2DEG in SrTiO3 systems

Possibility to tune the 2DEG properties

Back-gate voltage (Vg) modulation

Influence on spin-charge interconversion rates

High Efficiency:

λIEE ~ 30 nm 

(0.2 nm in Pt)

Spin-pumping measurements: Back-gate 

voltage modulation in oxide 2DEG

D. Vaz et al., Nat. Mat. 18 (2019) P. Noel et al., Nat. 580 (2020) 

Non-volatile electric-control of the spin-
charge conversion

Large spin-to-charge conversion

2DEG at metal/STO interface

Ferroelectric

phenomenon

Spin-orbit torques in MRAMs

Electric-control in STO = new degree-of-liberty →

SOT efficiency modulation

Manchon et al., Rev. Mod. Phys. 91 (2019)

SOT - MRAMs

Magnetization 

switching
High-frequency 

oscillations

Domain wall & 

skyrmion motion

Magnetic Memories
Nano-oscillators Race-track 

memories
M. Kharbouche-Harrari et al., Conference on Design of 

Circuits and Integrated Systems (2018)

ST-FMR in STO

Due to Spin Hall or

Rashba-Edelstein effects

ST-FMR device

MgO (1.8 nm)

NiFe (10 nm)

Ta (t nm)
2DEG

STO

Ta (1 nm)

Microstrip
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Preliminary results on temperature dependence

2DEG at Ta/STO interfaces

STO/Ta(1nm)/NiFe(10nm)/MgO/Ta 

Temperature dependence of the sheet resistance

STO/Ta(1nm)/NiFe(10nm)/MgO/Ta 

Heterostructure conversion: Effective spin Hall angle 

versus frequency for different temperatures

Temperature dependence of the heterostructure charge-to-

spin conversion

When temperature :

➢ 2DEG conductivity (Fig.1)

➢ BUT electron energy → electron tunneling* through the Ta-barrier

Possible better detection of the charge-to-spin conversion in the 2DEG

* Y. Wang et al., Nano Lett. 17 (2017) 

Non-volatile electric-control of the sheet resistance of the 
2DEG in ST-FMR devices at 10K

CONCLUSIONS ➢Spin-orbit torques generated via the ST-FMR technique

➢Formation of the 2DEG at Ta/STO interface

➢ Increasing 2DEG conductivity with decreasing temperature

➢Non-volatile electric-control of the 2DEG resistivity by applying a

back-gate voltage

➢Optimum charge-to-spin conversion for tTa = 1 nm. Good balance requiered:

- if Ta layer is too thin (ex 0,2 nm): no 2DEG creation

- If Ta layer is too thick (ex: 1,5 nm): barrier effect

➢Effective spin Hall angle increases with increasing barrier thickness from 0.4 to 1 nm

➢Possible better detection of the charge-to-spin conversion in the 2DEG due to electron tunneling

through the Ta-barrier for increasing temperature
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Current-induced magnetization switching for memory applications (SOT-MRAMs)

For now: memory applications made of spin Hall materials → large SOT in heavy metals

Drawback : SOT sign & conversion efficiency are fixed by materials

Ferromagnetic resonance driven by spin-orbit torques

Coplanar waveguide matched to STO dielectric constant

Spin-obit torques: - Field-induced torque

- Damping-like torque

- Field-like torque

ST-FMR signals:                                                                                                           

Lorentzian functions

Analysis method: modulation damping*. Effective spin Hall angle Θ*tot extracted from

the linear dependence of the damping α with the injected DC charge current

Decreasing sheet resistance with decreasing temperature

→ signature of the 2DEG

2 resistance states : 

- Lower state = electron enrichment

- Higher state = electron depletion

Inversed hysteresis cycle → Charge trapping


