Minicolloque n° MMM13

Shrinking Surface Bubbles

L. Courbin ${ }^{*}$, M. Clerget, A. Delvert, \& P. Panizza,

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France

* Email: laurent.courbin@univ-rennes1.fr
$\$$
Société Française
Societe Française
de Physique

The draining of a tank is a problem that has been widely studied, beginning some 400 hundred years ago with the pioneering work of Evangelista Torricelli. Here, we discuss a variant of this problem by working with deformable tanks - soap bubbles sitting on thin solid plates with a circular orifice located under their apex. We observe three different shrinking behaviors which are modeled using simple physical arguments.

The setup

We prepare surface soap bubbles with an initial radius R_{0} on thin plate. The apex of the bubble is located over a circular orifice of radius a initially closed.

The experiment

Shrinking begins when the orifice is opened and we record the evolution with time t of three distances:

- the bubble's radius of curvature $R_{c}(t)$;
- the height $H(t)$ of the bubble at its center;
- the distance $X(t)$ between base of the bubble and orifice.

Three experimental shrinking regimes

Three regimes are seen experimentally. Their occurrence depends on key parameters of the problem: the size of the orifice and that of the initial bubble and physico-chemical properties of the fluid system.
regime I : the bubble remains hemispherical as shrinking proceeds.

regime II: the bubble takes on the shape of a spherical cap.

regime III: the bubble collapses on itself with a motionless bubble base.

Modeling the flow

A simple model allows us to account for the shrinking regimes seen experimentally. The dynamics in all three regimes are modeled using

- Bernoulli's principle for the air flow;
- conservation of air flow rate;
- friction acting on the base of a bubble.

We obtain a set of differential equations for the normalized distances $r_{c}=R_{c} / R_{0}, h=H / R_{0}$ and $x=X / R_{0}$ that we solve numerically.

