

Minicolloque n° MMM13

Shrinking Surface Bubbles

L. Courbin*, M. Clerget, A. Delvert, & P. Panizza,

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France * Email: laurent.courbin@univ-rennes1.fr

The draining of a tank is a problem that has been widely studied, beginning some 400 hundred years ago with the pioneering work of Evangelista Torricelli. Here, we discuss a variant of this problem by working with deformable tanks – soap bubbles sitting on thin solid plates with a circular orifice located under their apex. We observe three different shrinking behaviors which are modeled using simple physical arguments.

The setup

We prepare surface soap bubbles with an initial radius R_0 on thin plate. The apex of the bubble is located over a circular orifice of radius *a* initially closed.

surface soap bubble

The experiment

Shrinking begins when the orifice is opened and we record the evolution with time t of three distances:

- the bubble's radius of curvature $R_c(t)$;
- the height H(t) of the bubble at its center;
- the distance X(t) between base of the bubble and orifice.

Modeling the flow

A simple model allows us to account for the shrinking regimes seen experimentally. The dynamics in all three regimes are modeled using

- Bernoulli's principle for the air flow;
- conservation of air flow rate;
- friction acting on the base of a bubble.

We obtain a set of differential equations for the normalized distances $r_c = R_c/R_0$, $h = H/R_0$ and $x = X/R_0$ that we solve numerically.

••• Experiments

Numerical predictions

In regime I, we derive an analytical solution for the time t_{stop} it takes the air to completely escape from the bubble. This predicted time compares well to experiments; ρ_a is the air density and γ is the air-liquid surface tension.

M. Clerget et al. Am. J. Phys. 89, 244 (2021)