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The draining of a tank is a problem that has been widely studied, beginning some 400 hundred years ago with the pioneering work of 

Evangelista Torricelli. Here, we discuss a variant of this problem by working with deformable tanks – soap bubbles sitting on thin solid plates with 

a circular orifice located under their apex. We observe three different shrinking behaviors which are modeled using simple physical arguments. 

Modeling the flow 

A simple model allows us to account for the shrinking regimes seen experimentally. 

The dynamics in all three regimes are modeled using 

 – Bernoulli’s principle for the air flow; 

 – conservation of air flow rate;  

 – friction acting on the base of a bubble. 

Three experimental shrinking regimes 

Three regimes are seen experimentally. Their occurrence depends on key 

parameters of the problem: the size of the orifice and that of the initial bubble and 
physico-chemical properties of the fluid system. 

 

The setup  

We prepare surface soap bubbles with an initial radius 
R0 on thin plate. The apex of the bubble is located over a 

circular orifice of radius a initially closed.  
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regime I: the bubble remains hemispherical as shrinking proceeds. 

regime III: the bubble collapses on itself with a motionless bubble base. 

regime II: the bubble takes on the shape of a spherical cap. 
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In regime I, we derive an analytical solution for 
the time tstop it takes the air to completely escape 

from the bubble. This predicted time compares 
well to experiments; ½a is the air density and is 

the air-liquid surface tension. 
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Shrinking Surface Bubbles 

 

The experiment 

Shrinking begins when the orifice is opened and we record the 
evolution with time t of three distances: 

 – the bubble’s radius of curvature Rc(t); 

 – the height H(t) of the bubble at its center; 

 – the distance X(t) between base of the bubble and orifice. 

 

R0= 33  1 mm  

constant initial radius 

radius of the orifice  

and/or 
liquid viscosity 

We obtain a set of differential equations for the normalized distances 
rc=Rc/R0, h=H/R0 and x=X/R0 that we solve numerically. 
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