LIESST above T_{LIESST} on $Fe(\text{phen})_2(NCS)_2$: a balance between relaxation time and fluence.

Lucas Gournay1, Gæél Privault1, Laurent Guérin1, Bernard Humbert2, Jean-Yves Mevellec2, Marco Cammarata3, Nathalie Darot4, Guillaume Chastanet4 and Eric Collet1

1Institut de Physique de Rennes, Rennes, France
2Institut des Matériaux Jean Rouxel, Nantes, France
3European Synchrotron Radiation Facility, Grenoble, France
4Institut de Chimie des Matériaux de Bordeaux, Bordeaux, France

The $Fe(\text{phen})_2(NCS)_2$ spin crossover molecule is a textbook photo-switchable system. At very low temperature, the molecule is switched by light from the Low Spin (LS) to a meta-stable High spin (HS) state, this is the Light Induced Excited Spin State Trapping or LIESST. This state remains stable until a limit temperature known as T_{LIESST} [1]. The LIESST effect has been intensively studied since its discovery in the 80s [2]. Below T_{LIESST}, phenomena such as Light Induced Thermal Hysteresis (LITH) [3] or Light Induced Optical Hysteresis (LIOH) [4] were also investigated. Above T_{LIESST}, the fast relaxation rate precludes investigating LIESST with conventional technique and it is required to use ultra-fast pump probe techniques [5].

We report here, the observation of the LIESST effect above T_{LIESST} in a photo-stationary state (see Fig. 1). We used Micro Raman spectroscopy with 633nm wavelength. Thanks to the microscope objectives, the focal spot of the laser is very small on the crystal ($<4 \, \mu m$) and is allowing a very high laser fluence. In this compound the photo switching is very efficient at 633nm and the fluence is sufficient to balance the relaxation rate of the meta-stable High spin state. This competition between LIESST and relaxation rate can be described by a very simple kinetic model that will be discussed during the presentation. The results show that micro-Raman spectroscopy, sensitive to the spin state, allows for observing LIESST well above T_{LIESST} and monitoring fast relaxation through laser fluence modulation.

![Figure 1](image_url)

Figure 1: a) LIESST Effect in the $Fe(\text{phen})_2(NCS)_2$ measured with SQUID (upper figure) and optical reflectivity (down figure). The solid line represents T_{LIESST}. Figure taken from [6]. b) Dots are representing the experimental intensity of a Raman High Spin mode in function of the temperature. The solid line represents the model that we derived to explain the phenomena, this line is not a fit but just the raw model taking into account the experimental conditions.

References