Ultrafast photoinduced electron dynamics in strontium iridate

J. Caillaux1*, D. Bresteau2, T. Ruchon2, B. Lenz3, M. Casula3, J. Zhang1, Z. Chen1, I. Vadillo-Torre2, C. Spezzani1, O. Tcherbakoff2, P. d’Oliveira2, P. Salières2, F. Polack4, D. Dennetiere4, V. Brouet1 and M. Marsi1

1. Laboratoire de Physique des Solides, Université Paris-Saclay, Orsay, France
2. Laboratoire Interaction Dynamique et Lasers, CEA Saclay, France
3. Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590 Sorbonne Université, France
4. Synchrotron Soleil, St-Aubin, France

* email: jonathan.caillaux@universite-paris-saclay.fr

Since the discovery of high-T\textsubscript{c} superconductors, understanding Mott insulating phases and their insulator to metal transitions has become increasingly important\cite{1}. As opposed to the Mott-insulating ground state found in 3d-electron compounds, a metallic ground state is expected to be found in strontium iridates, due to the extended 5d electronic orbitals of the Ir ions. However Sr\textsubscript{2}IrO\textsubscript{4} shows a non metallic behavior\cite{2}. Its insulating ground state arises mainly from the cooperative action of the onsite Coulomb interaction and strong spin orbit coupling, leading to a novel Jeff=1/2 Mott-insulating ground state\cite{3}. While the insulating ground state of Sr\textsubscript{2}IrO\textsubscript{4} below T\textsubscript{N} = 240K is stabilized by a Mott-Slatter mecanism, the origin of the high temperature insulating ground state remains under controversy. The presence of magnetic fluctuations may also give rise to a possibly Mott-Slatter hybrid scenario in which pseudo-spins long range correlations may cooperate with spin-orbit and onsite Coulomb interaction\cite{5-6}.

A possible way to disentangle magnetic fluctuations effects from Mott physics signatures is realized by photo-exciting strontium iridate single crystals with femtosecond light pulses. Following this approach, earlier pump-probe studies\cite{7,8} have pointed out strong similarities between iridates and cuprates electron dynamics such as two distinct time scale dynamics along with the formation of in-gap states.

In order to uncover short time electron dynamics, we present a high harmonic generation (HHG) based time resolved photo-emission of Sr\textsubscript{2}IrO\textsubscript{4}. This study has been performed at Attolab, a novel XUV based HHG beamline facility opened to external users, delivering photons from 19 to 100 eV with < 30 fs pulse duration at 10 kHz repetition rate\cite{9}. Using a 1.55 eV pump (fluence 2 mJ/cm2) with a 31.65 eV probe, we reveal for the first time the short time dynamics of the entire valence band of Sr\textsubscript{2}IrO\textsubscript{4} at room temperature. Our data reveal crucial informations about the time and energy resolved dynamics of the short lived in-gap states forming in the first 50fs after the photo-excitation. The origin of these in-gap states seems to be consistent with the framework of photo-doping of Mott insulators\cite{10} in which a photo-induced Mott gap renormalization occurs. This renormalization is observed via a light-induced shift of the valence band whose dynamics appears to be k-dependent. This might be a consequence of the k-dependence of the orbital character of Sr\textsubscript{2}IrO\textsubscript{4} band structure as reported in\cite{11}.

1 M. Imada, A. Fujimori et al., Rev. Mod. Phys., 70, 1039 (1998)
2 D. A. Zocco, J. J. Hamlin et al., J. Phys.: Condens. Matter, 26, 255603 (2014)
6 R. Arita, J. Kuneš et al., JPS Conf. Proc., 3, 013023 (2014)
8 C. Piovera, V. Brouet, Phys. Rev. B, 93, 241114(R) (2016)
9 T. Ruchon, D. Bresteau, C. Spezzani et al., private communication
10 P. Werner and M. Eckstein, Struc. Dyn., 3, 023603 (2016)
11 A. Louat, B. Lenz et al. Phys. Rev. B 100, 205135 (2019)