Metallicity and ferroelectricity in SrTiO$_3$ and related compounds

Kamran Behniaa, Shan Jianga, Clément Collignona, C. Willem Rischaua & Benoît Fauquéb

a. LPEM (CNRS- Sorbonne Université) ESPCI, PSL Research University, Paris, France
b. JEIP, USR 3573 CNRS, Collège de France, PSL Research University, Paris, France

* email: kamran.behnia@expci.fr

Strontium titanate avoids ferroelectric ordering thanks to quantum fluctuations. Since the low-temperature dielectric constant becomes extremely large, the effective Bohr radius is as long as a micron. Consequently, the insulator can be easily turned to a dilute metal subject to an intriguing superconducting instability. Substituting a tiny fraction of strontium atoms with calcium stabilizes ferroelectric order. Remarkably, dilute superconductivity and dilute ferroelectricity coexist in a narrow window of doping in Sr$_{1-x}$Ca$_x$TiO$_3$$^\delta$ [1]. The electrical transport in this dilute metal and the thermal transport in the parent insulator both present intriguing features [2-4].