Chiroptical and magnetic properties of lanthanide complexes
from an *ab initio* point of view

Maxime Grassera,*, Boris Le Guennica

\textit{a. Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France}

* email: maxime.grasser@univ-rennes1.fr

There is a growing interest in the use of circular dichroism (CD) and circularly polarized luminescence (CPL) for the structural characterization of chiral lanthanide-based complexes. Indeed, the sensitivity of these effects to the configurational and conformational environment around the lanthanide center enables to study structural changes in biological systems [1], as well as, to develop electroluminescent [2] or security [3] devices. However, the interpretation of CD and CPL spectra of such systems is by far not straightforward.

In the same time, since the pioneering work of van Vleck [4], it is well established that crystal field splitting is at the origin of both the magnetic and luminescent properties in lanthanide-based complexes. Consequently, both properties are strongly correlated and can be looked alongside. Magneto-chiral dichroism (MChD) is for instance one possible manifestation of this correlation [5].

In every instance, lanthanide-based complexes are very challenging for quantum chemistry due to (i) the presence of degenerate electronic states with multi-configurational character and (ii) the importance of the spin-orbit coupling in the calculations of the spin forbidden transitions [6]. Recent *ab initio* results over these topics, mainly focused on CD and CPL parameters, will be presented.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Simulated CD spectrum of the [Dy(d-facam)_3(phen)] complex (DFT ZORA-PBE0/TZP optimized structure) from CAS(9,7)SCF calculations.}
\end{figure}