## Efficient generation of coherent acoustic phonons with fiber-integrated microcavities

<u>M. Esmann<sup>a,c\*</sup></u>, O. Ortiz<sup>a</sup>, F. Pastier<sup>b</sup>, A. Rodriguez<sup>a</sup>, Priya<sup>a</sup>, A. Lemaître<sup>a</sup>, C. Gomez-Carbonell<sup>a</sup>, I. Sagnes<sup>a</sup>, A. Harouri<sup>a</sup>, P. Senellart<sup>a</sup>, V. Giesz<sup>b</sup>, and N. D. Lanzillotti-Kimura<sup>a</sup>

- a. Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau
- b. Quandela SAS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
- c. current affiliation: Department of Physics, Carl von Ossietzky Universität, 26129 Oldenburg, Germany

## \* email : m.esmann@uni-oldenburg.de

Coherent phonon generation by picosecond optical pump-probe spectroscopy [1] is an important experimental tool for studying acoustic properties at the nanoscale. In this work, we integrate semiconductor micropillar cavities confining near-infrared light and 18 GHz acoustic phonons with single-mode fibers. This approach solves three major challenges of existing pump-probe experiments using mechanical delay lines: (1) stability of the optical mode overlap, (2) reproducibility of the excitation conditions, and (3) high power densities limiting the range of compatible samples. These shortcomings have so far been a roadblock in establishing pump-probe spectroscopy as a quantitative tool for nanoacoustics.

## Results

In this work, we simultaneously solve the three aforementioned challenges by integrating fibered systems into pump-probe experiments, lifting the necessity for any optical alignment during the experiments. We aligned and glued a single mode fiber onto an optophononic micropillar [3] beforehand as shown in Fig. 1.



Figure 1 (a) Optophononic micropillar cavity. (b) Device integrated into a single mode fiber. (c) Nanophononic response of the device measured by pump-probe spectroscopy. (d) Stability of the response over 42h. Figure adapted from Ref. [2].

Our approach allows us to observe stable coherent phonon signals over at least a full day and at extremely low excitation powers down to  $1\mu$ W. This excellent stability enabled us to perform detailed power dependence studies revealing complex dynamics of the optical and phononic modes [4]. Considering these dynamics, we are able to optimize excitation conditions and observe a mutual coherence between the optical and acoustic mode. The monolithic sample structure is transportable and provides a means to perform reproducible plug-and-play experiments. The integration with fibers might also establish the missing link between high frequency acoustic phonon engineering and stimulated Brillouin scattering in structured optical fibers [5].

## References

- [1] P. Ruello and V. E. Gusev, Ultrasonics 56, 21 (2015).
- [2] [2] O. Ortiz, et al. Appl. Phys. Lett. 117, 183102 (2020).
- [3] F. Haupt et al. Appl. Phys. Lett. 97, 131113 (2010).
- [4] S. Anguiano et al. Phys. Rev. A 98, 013816 (2018). [5] A. Godet et al. Optica 4, 1232 (2017).