Quantum Monte Carlo method in high T_c sulfur hydride

R. Taureaua*, M. Casulaa**

*a. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590,IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France

* email: roomain.taureau@sorbonne-universite.fr, ** michele.casula@sorbonne-universite.fr

H_3S is one of the firstsly discovered hydride superconductors with very high T_c (203 K) [1]. This high T_c occurs around the R3m \rightarrow Im-3m phase transition peak at very high pressure (150 GPa). Current DFT methods fail to reproduce the location of the transition pressure and the experimental data [2]. In this work we investigate this transition with more advanced methods such as Quantum Monte Carlo, in order to get a more accurate description of the electronic correlations and reproduce these data.

Figure 1: H_3S crystal representation, the high T_c is maximal when the transition occurs between these two close phases. In blue the hydrogen atoms, in purple the sulfur ones. (Source [2])