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OBJECTIVES PARAMETER SPACE PHASE DYNAMICS

We build a continuum theory from discrete cell
motion equations previously proposed [1]. We

=0.8
investigate the minimal conditions under which . o
cell aggregation occurs on a sphere, considering ’\ i :
interaction and self-propulsion forces such as: ’ B l
- W, =10
1. Cell-cell and cell-substrate adhesion v=0.5
2. Contact inhibition of locomotion (CIL) » | 0
3. Cell-substrate friction , . ‘ W.=12 or,
4. Self-propulsive motile force v v=0.1 \& 7 I
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Let consider a continuous density of cells
¢’ (x,t) = n(x,t)2 such that
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Po = A / d*z¢’(x,1t) Figure: Phase dynamics at ¢9 = 2/2 of 4 points in the parameter space within 2 [months]. Scaled phase
fluctuates between 0 (blue) and 1 (red). Cell concentration ranges up to the overlap factor (2.
with 0 < ¢g < 1 the initial cell concentration and
A the total area covered by the cells [2]. A contin-

uum approach is constructed from the cell motion

Figure: Parameter space at cell density ¢y = 2/2

within 7% = 2 [months] time scale. Light (blue) The values of (D, \) in equation (1) are mapped onto the (W, 1) space through [2]
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at different points in the phase space. with diffusion constant D = k,R: /v and k, = 2 WS;FQWC the stiffness of the virtual springs associated to
0]

the elastic force mediating the interaction between two neighboring cells. Cohesive states dominate as

We consider numerical simulations on the surface , , ,
increasing W . ratio.

of an elastic sphere, cells motion occurs between

where Vs is cell-substrate frictipn. Including two enveloping layers. Membranes deformation
the confinement due to the elastic membranes a is proportional to local cell concentration. The

Cahn-Hilliard equation is obtained ratio of the employed numerical cell size to the

sphere radius is 1/20. The square of the field max-

g_f — DV? (6? (;H A2V2gb> (1) imum is shown at the end of each run.

accounting for the conservation of cell concentra-
tion, where fog = (c5/2)9*(1—¢)? is a symmetric
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CONCLUSIONS

e Different phases are found in agreement with previous results employing self-propelled particle
simulations [1], exhibiting gas-like states, polar liquids and 3D structures.
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