I will discuss the dynamics of a strongly-interacting Bose gas after an interaction quench [1]. To describe the short-time far-out-of-equilibrium dynamics in a non-perturbative and ergodic way, we develop a cumulant theory based on a hierarchical treatment of two-, three-, and four-body correlations. We show how three-body correlations drive the system away from the universal prethermal state predicted by Hartree-Fock-Bogoliubov theory and characterized by a kinetic temperature and an emergent Bogoliubov dispersion law. We also find signatures of the Efimov effect in the many-body dynamics and make a precise identification between the observed beating phenomenon and the binding energy of an Efimov trimer. We show the appearance of two- and three-body long-range order, which reveal the existence of out-of-equilibrium dimer and trimer condensates. I will also compare our predictions for a uniform gas with experimental results for quenched unitary Bose gases in uniform potentials [2].


* kurkjian@irsamc.ups-tlse.fr