Al Thermal Diffusion in Ge and Si$_x$Ge$_{1-x}$ Nanowires: A Novel Approach towards 1D Heterostructure Fabrication

Luong Minh Anha, Robin Erica, Pauc Nicolasb, Gentile Pascalb, Baron Thierryc, Salem Bassemd, Sistani Masiard, Lugstein Aloisd, Spies Mariae, Fernandez Brunoe, den Hertog Martiene

a. Université Grenoble Alpes, CEA, IRIG-DEPHY, F-38054 Grenoble, France
b. Université Grenoble Alpes, CEA, IRIG-DEPHY, PHELIQS/SINAPS, F-38000 Grenoble, France
c. CNRS, LTM, 38054 Grenoble, France
d. Technische Universität Wien, Institute of Solid State Electronics, Gußhausstraße 25, Vienna 1040, Austria
e. Université Grenoble Alpes, CNRS, Institut NEEL UPR2940, 25 Avenue des Martyrs, Grenoble 38042, France

* email: minhanhapc@gmail.com, martien.den-hertog@neel.cnrs.fr

Thermally activated solid state reactions forming metal silicides (germanides) nanowire heterostructures have recently received special interests as they could be either employed as a platform to study the Fermi-level pinning effect at metal- Si (Ge) junctions or used as building blocks for fabricating short-channel devices such as photodetectors, single-electron transistors by Coulomb blockade effect or state-of-the-art field effect transistors (FETs). We study the Al-Ge binary system, combining ex-situ and in-situ heating methods, and present a proof of principle experiment carried out in-situ in a transmission electron microscope where we precisely control the metal propagation speed and produce an axial Al/Ge/Al nanowire heterostructure with an ultra-short Ge segment down to 7 nanometers [1]. In the Al- (Ge, Si) ternary system, the thermal reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted Si$_x$Ge$_{1-x}$ part, forming an axial Al/Si/Si$_x$Ge$_{1-x}$ heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si$_x$Ge$_{1-x}$ alloy nanowire while maintaining the rod-like geometry and crystallinity, see Fig. 1, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si based technology [2].

Figure 1: HAADF - STEM images of Al thermal propagation in passivated Si$_x$Ge$_{1-x}$, NW (with 20 nm Al$_2$O$_3$ shell) showing the formation of Al/Si-rich/Si$_x$Ge$_{1-x}$ heterostructure, and schematic illustrations of the diffusion paths of Si, Ge and Al atoms during the heating and cooling process, respectively.